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ELASTIC STATE OF A PLATE WITH A CIRCULAR PLUG 
AND A RECTILINEAR THIN ELASTIC INCLUSION* 

D.V. GRILITSKII, V.K. OPANASOVICH and L.O. TISOVSKII 

There is considered the problem of the state of stress of an infinite elasticplane 
with a bonded circular plug and an arbitrarily located thin elastic inclusion under 
biaxial tension. Conditions of ideal mechanical contact are satisfied on the line 
separating the materials. By using the complex Kolosov- Muskhelishvili potentials, 
the problem is reduced to a system of integro-differential equations whichissolved 
numerically by utilization of a mechanical quadrature method. A numerical analysis 
is given for the solution of the problem of the elastic equilibrium of a plane with 
a circular hole and an arbitrarily located thin inclusion. 

1. Let us consider the elastic equilibrium of an isotropic infinite plate with a bonded 
circular plug of radius R and an arbitrarily oriented rectilinear thin elastic inclusion of 
length 21 and width 2h. The center of the plug, the point 0, is connected to the Cartesian 
coordinate system XQY while the point 0, at the center of the inclusion is the origin of a 
local coordinate system zlO,y,, where the axis x1 coincides with the middle line of the inclu- 
sion and makes an angle a with the z axis (Fig.1). The plate is stretched at infinity by 
uniformly distributed external forces N, and Nzin mutually perpendicular directions, where 
the force N, makes the angle 8 with the r axis. On the line separating the plug from the 
plate the conditions of ideal mechanical contact are satisfied. 

We shall denote quantities characterizing the inclu- 
sion by the subscript 1, and the plug by 0. We use the 
superscripts plus and minus to denote the boundaryvalues 
of the functions as y,-+ $0 and respectively. 

nz 
y,-t--0, 

We denote the domain Iz 1 <R by A', and the domain 
isi> R by S,. Here and henceforth, we retainthenota- 
tion from the monograph /l/. 

Fig.1. 

The following boundary conditions bold on the edges 
of the inclusion: 

(cIl - ir,,)t+ = (a$/ - irrJ1f, (u + iv)* = (u + iv),f (1.1) 

The components s,,cU,zxy of the stress tensor and 
the components U,B of the displacement vector are defin- 
ed from the formulas /l/ 

u's + uu = 2 I@ (2) + CD @)I (1.2) 

cff - iz J@ = (P(z) + 8 (Z) + (2 - i) q(z) 

2&u -j- iu)=x@(z)- Q(Z)- (z - Z)(D') 

Q(z) = rir (2) + 23 (z) + F (2) (1.3) 

Y (2) =H (2) - (I, (2) - zw (2) 

Because of the linearity of the problem, the complex potentials a{(z) and v(s) are re- 
presented as follows for the plate 

@ (2) = @1 (2) + % (2). Y (2) = Y, (2) -I- H, (2) (1.4) 

where @J(Z), Y,(z) (j= i,2) are functions governing the state of stress in a plate with an 
inclusion but without a circular plug (j = 1) and with a circular plug but without the inclu- 
sion (j 3 2). 

Neglecting higher order of smallness quantities compared with ?S for a thin inclusion, on 
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the basis oP (1.2) it is passible to write in the z,oryl coordinate rsystem 

ana taking inta account the relations (1.4) p then fox dekerminatian of Gensor straes Campon- 
ent 4 aMI zte in the pdar system, we will. have the S&lowing relations /2/: 



Here i= 2 for the plane with the inclusion without the plug, j = 0 for the plug, @p(z), 
Y,(z)axe functions governing the state of stress in the plug. Ideal mechanical contact con- 
ditions are satisfied on the line separating the plug from the plate according to the con- 
dition of the problem, hence, on the basis of (1.11) we arrive at boundary value problems to 
determine the functions @,,(.z) and QP,(a): 

1% (t) + @* tt11+ - 1% (t) + @, WI- = (1.12) 

O,(1) + G-C)- tm(t) - ft-‘YX t E so n s* 

~cL%o~, 0) - PO@,3 (t)l* - h.hX@~ (t) - II@, (t)l- = 

p, ix@1 (t) - @I (t) -+- mm + k-“u,ol, t E s, n S, 

Solving the linear conjugate problems (1.12) , and taking the relation (1.10) and the 
asymptotic representation of the functions @,@),yJ(z) (i = 0,2)into account /l/, we find after 
manipulations 

Passing to the limit as z,,+ co in (1.13), we obtain values of the complex potentials 
for a plane with a bonded circular plug that agree with the corresponding formulas presented 
in /3/. 

With the expressions (1.13) for (D,(z) and y,(z) available, on the basis of (1.7) and 
(1.9) we obtain a system of integro-differential equations to determine the unknown functions 
K(X), M(X), which will have the following form in the dimensionless variables 5 -z/l, 'c = t/l 

(1.14) 

(1.15) 

(1.16) 



81(? El = x ($kia rrg) t 
g, (2, 0 a @-ia [ CT* (@ - m 

7 (8’ - XT)* 
- f 3 

GI(GE)=, c1 n+ (1 -I- qq .im(T, g3 (z, E) 

G, (7, E) = g, (TC, 8 + g, (7, E) I 
gs lT, f) = ce_ia 2E* taa - ‘x) Cea - TT) 

X(9 - TX)3 

g4(r,~)=cf+v 
XI(eS-- 2TX)f3sVX-28' 

X8(8'- TX)* 

am=[c+ q(e+C,)] $, c4= $y---) 

fn(+,E)=[C+~(l--c3]~, fS(z,~)=(1+%)c $- 

pt (E) = (- l)(i-1) et 
I 
2l? + P’t+a + ~9 

C $+++ 
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(1.17) 

(1.18) 

p,-Zi.Z 

X' ( ~-22X)]+~(1_-cPn+el)r_ 

(1 + x) (r -I- gq 6Pi J _ 2ik& 

e = R/l, X = geia + z,ll, T = reia + z,ll 

The following conditions should hence be satisfied: uniqueness 
traversing the outline of the inclusion and equality to zero of the 
principal moment of all the forces applied to the inclusion. These 

of the displacements when 
principal vector and 
conditions can be repre- 

sented in the form (A is a closed contour enclosing the domain of the inclusion) 

5 fj’ (4 dr =o, f=I,3; Re S[zlSi(zl)+(~(z1)1dzl=O (1.19) 
-1 A 

The system of equations (1.14) and the conditions (1.19) were solved numerically by us- 
ing the method of mechanical quadratures /4/. After manipulation, we obtain a system of 
linear algebraic equations to determine n,,,, and y 

,~~j~~~*,(L,,r,)uim=.~pr(r,.V): l=1,2; (1.20) 

r=I,2,..., ilf - 1 

5 ulm=O, j=l,3; Imm~Iu,tm=O 
m=, 

qrn = fj’ (t”) Jl-T=q, t, = cos y 51, x1= co+ 

Mi, (&,,, x,) = aijq (hn - 5,) - h&J &, z,.) 

0, Ll>G 

1l(fm-~A= , 
i 1 

t <r 
m\ r 

The state of stress in the neighborhood of the end of the inclusion can be represented 
by formulas in /5/, where the stress intensity factors Kt(i = 1,2,3,4) are evaluated in the 
case under consideration by the formulas (j = 1 for the left end, j = 2 for the right end, 
W is even) 

K,‘- iKzj = kZ,, KJj - iK,j = Z, 
M 

z* = 2h m+ z (- l)mUim ( ctg +~)(u-‘), i = 1, 3 
rn=l 

tion 
same 

The problem for an inclusion located within the plug is solved analogously. The solu- 
of the problem when there are Ninclusions in the plate of plug can be obtained by the 
means. 
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2. Particular case. Plate with a plug and a crack. Introducing the change of 
variables 

a'(r)=-&WL&- 
f2.11 

and passing to the limit as ~~-0 in (1.14), we obtain 

where the expressions fox the functions s,, (7, E), &, (t,%), p1 (E) are given by (1.16)- 41.18) - 

Plate with a plug and an absolutely rigid inclusion. Passing to the limit as 
~1-+oo in (1.14), we find 

+ { r~~~~,~)~~~~) _t & (r~f)k'(r)] dz =I;%@ + %l~sf%h 1 %t<* f2.3f 
--I 

4 

E Ul,f,W$$$\ mdz- f fn’f@ -0, 1%1<1 
J==l 

where the expressions for the functions1cr,l,S,J(r,5), sgI ('c, 5) are determined by (1.15)- (1.18). 

Plate with a circular hole and an inclusion. Passing to the limit as ~,+a in 
(1.14), we will have a system of integro-differential equations for the planewiththecircular 
hole and arbitrarily oriented inclusion under the assumption that the hole outline is force- 
free. We should set c = e, = 1 and 

pt(E)=(- l)(W et 2r + F&"" + oa 
I C 

J& + + + (2.4) 

@ia(-&(F-2X) + -$$)I -(1+ x)bpj(11+ $-r')} - 2%& 

into (3..14)- f1.17f formulas* 
Now passing to the limit as pl+@ we obtain an integral equation for a plane with a 

circular hole and an axbitrarily located crack, which agrees with the corresponding equation 
presented in /4/. 

Passing to the limit as yz,-+ 00, we find a system of integral equations for a plane with 
a circular hole and an absolutely rigid inclusion. 

Plate with an inclusion. Passing to the limit as e-t@ in f1.143 or as po+p, we 
obtain a system of integro-differential equations of Prandtf type for a plane with an elastic 
inclusion, which agrees with the system of equations presented in /5/. 

Two bonded half-planes with an inclusion. Performing the transformation of 
coordinate systems z--)_2, ~/-+y - E and passing to the limit as a-*~ in (1.14), we obtain 
a syste,n of integro-differential equations for two homogeneous half-planes bonded along the 
real axis and with an arbitrarily located on elastic inclusion in one of them. In this case 
the relationships (l,l?)- (1.18) have the form 

Half-plane with an elastic inclusion. Performing the transformation of coordinate 
systems as in the previous case, and passing to the limit as s--too and t”_@-+a in (1,14)- 
(1.16), (2.5), f2.6) (i.e., setting c = cl = If9 we find a system of integro-differential equa- 
tions for a half-plane with arbitrarily oriented elastic inclusion. In this case (2.63 takes 
the form 
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p1 (5) = (-I)(‘-‘)e, (I(1 +e-y2r $- I?’ + P)l - (1 + x)(l- + 7’)6,,) - ZikyS*; (2.71 

3. A numerical analysis of the solution of the problem has been performed. To 0.2% 
accuracy, values of the stress intensity factors were obtained for a crack and an absolutely 
rigid inclusion in an isotropic plane.Resultsof thenumericalanalysisfor an elasticplanswith 
a circular hole and arbitrarily oriented elastic inclusion are represented in Figs.2-4. 
Quantities referring to the left vertex of the inclusion are denoted by dashed, and the right 
by solid lines. 

Fig.2 

I , I I 
u Z/f .wy B 

Fig.3 Fig.4 

The calculations were performed for the following values of the parameters: M=20,h/l=r 
O.f, Rli = 2, Z& = 4, itoll= 0, &IN, = 0, xl = Y. = 2. 

The dependence of the stress intensity factors K~'==KiI(flN,) (I =i, 2,3,4) on the relative 
plate stiffness k= CL/p& is represented in Fig.Pa for uniaxial tension in a direction perpend- 
icular to the line of the inclusion (a=O, 3=n/2). Curves I and 2, respectively, characterize 
the stress intensity factors C'and K.'. For such a loading K;=Ki=O. 

The dependence of Xi'@= i,2,3,4) on the distance d between the edge of the hole and the 
left end of the inclusion is represented in Fig.2b under the condition that the inclusion is 
on the real axis for $=rl2. Curves 1 characterize the crack (K,'= K;= K,'=o), 2is an absol- 
utely stiff inclusion (K,‘= K,' = K,'- 0). 8 is an elastic inclusion with the relative stiff- 
ness k =10 (Kp’= K,'=K,'=U). For k-O.! the stress intensity factors are of the order of 
10-'-10-l and, hence, are not indicated in Fig.Zb. 

Curves l- 4 in Figs.3 and 4 characterize the factors Ki' (I= i,2,3,4) for L = 10, while 
curves S-9 are the same factors for k=O.l. 

The dependence of Ki' on the angle $ at which the tensile force acts for a=0 is given 
in Fig.3. Analyzing the shape of the functions Pi(E)(i= 1,2), they can be represented as fol- 
lows: pi (6) = Ai (E)+ & (E) pip, where Ai@, B, (6) are certain real functions. We hence obtain 

R@ (Pi (z/4 - B)) = Ai (f) -I- 2% (E) sin 23, Re (pi (n/4 + fi)) = 
Ai (6) - Ri (5) sin 2S, Im(pi (n/4 - B)) = 1m {pi (n/4 + 3)) 

from which it follows that the straight line $=%/4 is the axis of symmetry for&'. K;, on the 
straight lines K~'=Ki'(n/4)(1=1,3) which are the axes of antisymmetry for Kfp,K;, respectively. 
Hence, it is sufficient to conduct investigations for the angles O<@<n/4. 

The dependence of Ki'(l= i,2,3,4) on the angle of orientation CT of the inclusion at @= 0 
is represented in Fig.4. From physical considerations it follows that the mentioned depend- 
ences should be considered only in the segment [O,n/Z]. 
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